[the_ad id=”476″]

Definition of a logarithm

If

 x> 0

and there is a constant

b≠1

, then

y=logb⁡x

, then  if and only if

by=x

In the equation

logb⁡x

, y is referred to as the logarithm, b is the base, and x is the argument.

The notation  is read “the logarithm (or log) base b of x .” The definition of a logarithm indicates that a logarithm is an exponent

y=logb⁡x

is the logarithmic form of

by=x by=x by=x

is the exponential form of

y=logb⁡x

Example
1 Write each equation in its exponential form.

      1.    a.
        2=log7⁡x      b.

        3=log10⁡〖(x+8)〗c.

        log5⁡125=x

2 Write the following in its logarithmic form:

x=〖25〗(1/2)

Solution:

Use the definition

y=logb⁡x

if and only if

by=x

(a)

2=log7⁡x

if and only if

72=x

(b).

3=log10⁡〖(x+8)〗

if and only if

〖10〗3=x+8

(c)

log5⁡125=x

if and only if

5x=125

  1. Use the definition
    by=xif and only if

    y=logb⁡x

x=〖25〗(1/2) if and only if 1/2=log25⁡x

Introduction to Logarithms

EQUALITY OF EXPONENTS THEOREM

If b is a positive real number

(b≠1)

such that

bx=by, then x=y

Example:

evaluate

log2⁡32=x

Solution: Use the definition

y=logb⁡x

if and only if

by=x x=log2⁡32

if and only if

2x=32

2x=25

⇒     Thus, by Equality of Exponents,

x=5

PROPERTIES OF LOGARITHMS

b≠1

If b, a, and c are positive real numbers,

, and n is a real number, then:

  1. Product:
    logb⁡〖(a×c)〗=logb⁡a+logb⁡c
  2. Quotient:
    logb⁡〖a/c〗=logb⁡a–logb⁡c
  3. Power:
    logb⁡〖an〗=n.logb⁡a
  4. loga⁡1=0
  5. logb⁡b=1
  6. Inverse 1:
    logb⁡〖bn〗=n
  7. Inverse 2:
    blogb⁡n=n,n>0
  8. One-to-one:
    logb⁡a=logb⁡c if and only if a=c
  9. Change of base:
    logb⁡a=logc⁡a/logc⁡b=log⁡a/log⁡b=ln⁡a/ln⁡b

 Examples

  1. Use the properties of logarithms to rewrite each expression as a single logarithm:

(a)

2logb⁡x+1/2logb⁡〖(x+4)〗

(b)

4logb⁡〖(x+2)〗–3logb⁡〖(x–5)〗

  1. Use the properties of logarithms to express the following logarithms in terms of logarithms of x, y and z

(a)

logb⁡〖(xy2)〗

(b)

logb⁡〖(x2√y)/Z5〗

Solutions: 1. Use the properties of logarithms to rewrite each expression as a single logarithm:

(a)

2logb⁡x+1/2logb⁡〖(x+4)〗=logb⁡〖x2〗+logb⁡〖〖(x+4)〗(1/2)〗

power property

=logb⁡〖[x2〖(x+4)〗(1/2)〗]

product property

(b)

4logb⁡〖(x+2)〗–logb⁡(x–5)=logb⁡〖(x+2)4〗–〖3log〗b⁡〖〖(x+4)〗3〗

power property

=logb⁡〖〖(x+2)〗4/〖(x–5)〗3〗

quotient property

  1. Use the properties of logarithms to express the following logarithms in terms of logarithms of x, y and z

(a)

logb⁡〖xy2〗=logb⁡x+logb⁡〖y2〗

product property                       ⇒

logb⁡〖xy2〗=logb⁡x+logb⁡〖y2〗

(b)

logb⁡〖(x2√y)/Z5〗 =logb⁡〖(x2√y)〗–logb⁡〖Z5〗

quotient property

=logb⁡〖x2+〗logb⁡√y–logb⁡〖Z5〗

product property

=〖2logb〗⁡〖x+〗logb⁡√y–5logb⁡Z

power property

COMMON LOGS

A common logarithm has a base of 10. If there is no base given explicitly, it is common. You can easily find common logs of powers often. You can use your calculator to evaluate common logs.

NATURAL LOGS

A natural logarithm has a base of e. We write natural logarithms as ln. In other words,

loge⁡x=lnx

.

centreforelites

Share
Published by
centreforelites

Recent Posts

Format for Literature Review Article for Publication

Introduction The literature review is a crucial component of scholarly research, serving not only to… Read More

4 jours ago

Teachers’ Level of Understanding of Inclusive Education on Their Efficacy in the Inclusive Early Childhood Education Delivery

Teachers’ Level of Understanding of Inclusive Education on Their Efficacy in the Inclusive Early Childhood… Read More

2 semaines ago

The Concept of Staffing: An In-Depth Exploration

Staffing is a fundamental aspect of organizational management that plays a critical role in determining… Read More

2 semaines ago

Distinction between Curriculum and Other Related Terminologies

Curriculum and Syllabus Most often people tend to equate the word “syllabus” with Curriculum”. This… Read More

2 semaines ago

Growing Up: What Does Religion Say?

This blog post aims to explore the perspectives of various religious traditions on the experience… Read More

2 semaines ago

Exploring the Types of Curricula Applied In Education

There are so many types of curricula. Understanding the different types of curricula is important… Read More

3 semaines ago